Controlled Multi-Batch Self-Assembly of Micro Devices

نویسندگان

  • Xiaorong Xiong
  • Yael Hanein
  • Jiandong Fang
  • Yanbing Wang
  • Weihua Wang
  • Daniel T. Schwartz
  • Karl F. Böhringer
چکیده

A technique is described for assembly of multiple batches of micro components onto a single substrate. The substrate is prepared with hydrophobic alkanethiol-coated gold binding sites. To perform assembly, a hydrocarbon oil is applied to the substrate and wets exclusively the hydrophobic binding sites in water. Micro components are then added to the water, and assembled on the oil-wetted binding sites. Moreover, assembly can be controlled to take place on desired binding sites by using an electrochemical method to de-activate specific substrate binding sites. By repeatedly applying this technique, different batches of micro components can be assembled to a single substrate sequentially. As a post assembly procedure, electroplating is incorporated into the technique to establish electrical connections for assembled components. Important issues presented are: substrate fabrication techniques, electrochemical modulation by using suitable alkanethiol (dodecanethiol), electroplating of tin and lead alloy and binding site design simulations. Finally, we demonstrate a two-batch assembly of silicon square parts, and electrical connectivity by electroplating contacts to surface-mount light emitting diodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-batch Self-assembly for Microsystem Integration

In this paper, we describe a parts-to-substrate self-assembly approach driven by surface tension. To perform assembly, the substrates are prepared with hydrophobic gold patterns as binding sites. The binding sites are activated by adsorption of an alkanethiolate self-assembled monolayer (SAM), while they can be de-activated by electrochemical reductive desorption of the monolayer. Therefore, as...

متن کامل

Parallel micro component-to-substrate assembly with controlled poses and high surface coverage

We demonstrate a novel parallel micro assembly process based on both shape recognition and capillary-driven self-assembly in an air environment. Mechanically diced 790 μm square silicon parts with flat or step edges were used for proof-of-concept demonstrations. Each part had only one hydrophobic 790μm × 790 μm face and its other faces were hydrophilic. On a vibrating plate, tumbling parts were...

متن کامل

Multi-batch micro-self-assembly via controlled capillary forces

Recent advances in silicon processing and microelectromechanical systems (MEMS) have made possible the production of very large numbers of very small components at very low cost in massively parallel batches. Assembly, in contrast, remains a mostly serial (i.e., nonbatch) technique. In this paper, we argue that massively parallel selfassembly of microparts will be a crucial enabling technology ...

متن کامل

Self-Assembly in Micro- and Nanofluidic Devices: A Review of Recent Efforts

Self-assembly in microand nanofluidic devices has been the focus of much attention in recent years. This is not only due to their advantages of self-assembling with fine temporal and spatial control in addition to continuous processing that is not easily accessible in conventional batch procedures, but they have evolved to become indispensable tools to localize and assimilate microand nanocompo...

متن کامل

Let's twist again: elasto-capillary assembly of parallel ribbons.

We show the self-assembly through twisting and bending of side by side ribbons under the action of capillary forces. Micro-ribbons made of silicon nitride are batch assembled at the wafer scale. We study their assembly as a function of their dimensions and separating distance. Model experiments are carried out at the macroscopic scale where the tension in ribbons can easily be tuned. The proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001